
Minimization Package Review
Jim Kowalkowski

Marc Paterno
CD/CEPA/APS/SLD

21 April, 2004

Contents

1 Introduction 1

2 Overview 2

3 Major Concerns 2

4 Design Recommendations 4

5 Coding Recommendations 9

6 Physical Design Recommendations 10

7 Documentation 10

8 Conclusion 11

1 Introduction

This review considered the MINIMIZATION library, a facility for numerical minimization of func-
tions. We looked at the most recent version of the code1. We considered both design and coding
issues, concentrating primarily on a user’s interaction with the library, and secondarily on inter-
nals.

Because of time constraints, this document contains detailed analysis of few classes; some
classes are not mentioned at all. We concentrated our comments on a few classes in order to
more fully explain the kinds of modifications we believe would be valuable. The same sort of
modifications could be made in other classes as well.

1.1 Goals of this Review

The goals for this review were to answer the follow questions:

• Is this package easy to use? Are the examples and documentation clear enough? Are the
interfaces of the user-level classes cohesive and complete?

• Does the class decomposition make sense? Does each class have a single, clear purpose?
Are the names of classes, functions, etc. helpful for the user’s understanding?

1“Most recent” in this case means the code at the head of the CVS repository as of 15 April, 2004. See §6.1 for
comments on code versioning.

1

2 Minimization Package Review

• Is the library extensible? Can users add new functionality with reasonable effort?

• Is the library maintainable? Can the author add new basic functionality with reasonable
effort? Will maintenance programmers be able to support the code when the main author
has moved on to another project?

2 Overview

The MINIMIZATION package provides an object-centric library for the numerical minimization of
functions. In broad terms, it aims to provide, and extend upon, the functionality provided by the
venerable Fortran package MINUIT.

The package goals include ease of use and ease of extensibility. A user who needs to apply
the provided minimization techniques to his own problem should be able to do so easily. A
mathematically sophisticated user who wishes to add a new minimization algorithm to the library
should be able to do so with a minimum of coding effort.

3 Major Concerns

In this section, we summarize our most important concerns with the package. Later sections go
into greater detail on these topics, and sketch possible solutions.

3.1 Major User Interface Concerns

3.1.1 Ease of Use

In experimenting with the library by writing our own Function subclass, we found that it was dif-
ficult to figure out why the minimization wasn’t converging2. The tools for determining the state
of the algorithm were insufficient; it was inconvenient to control the process of minimization. In
one sense, too much was hidden from the user.

At the same time, a great deal of detail was “in our face”. For example, we could not merely
ask for the current best estimate of the minimum of the function; first, we had to check to see
that the value was valid, and perhaps tell the Problem to evaluate the function once, and then
we could ask for the value of the function at the current point. It would be far better to have a
function to get the value of the function at the current point, and for this function to take care
of the details of what is necessary to do so.

3.1.2 Useful Extensions to the Package

We see a need for an interactive tool. The interactive mode of MINUIT is one of its greatest
strengths. It seems that the current version of MINIMIZATION is not so far away from allowing
the production of an interactive tool that uses a Problem to perform minimization under user
direction.

We believe it is best to prepare the library to support the development of such a tool, but
we do not believe that the tool should be built into this library. Such a tool will benefit from

2It turns out the reason for the failure was a simple coding error in our implementation of the Function subclass.
We expect such errors to be unfortunately common, and so it is important that the package provide sufficient tools to
allow the user to investigate the behavior of the package.

Minimization Package Review 3

graphical support; a number of different well-known techniques exist for separating an inter-
active user interface from a core library. One such way is to allow intermediate returns from
Problem :: minimize when specified conditions are met. Such conditions should include (but
not necessarily limited to):

• stop at a state change, and
• stop after n iterations.

Additional interesting intermediate conditions should be identified and supported. During an
intermediate return, the user should be able to view the algorithm state and take other actions
similar to the ones supported by MINUIT, such as fixing or freeing parameter, or scanning the
function by varying a single parameter.

This package appears to be almost ready for a command line interpreter to be added. We did
not get a chance to explore whether or not the MinimizationState contained all the necessary
information to support such functionality.

3.2 Major Design Concerns

We believe many of the problems discussed in this document are the result of insufficient modu-
larity and cohesiveness of the classes in the system. We believe each class should have a clearly
defined purpose, and provide an interface sufficiently complete to fulfill that purpose, and free of
features unrelated to that purpose. We find that too many of the classes in the package are not
treated as classes; their instances are treated as buckets of data, with the data being manipu-
lated externally by other code. This is why we describe the library as object-centric, rather than
object-oriented.

There is insufficient decomposition of functionality within classes. In many places within the
Algorithm subclasses, we find complicated state information within a single function. We also
find that many of the methods do not do one task; they do different tasks based on the state
of other objects in the system. Many of the methods were found to contain switch statements,
which almost always tends to couple a system tightly together and also add more branching than
is probably needed. These functions should be decomposed for better clarity. As it now exists,
the code presents significant maintenance challenges.

3.3 Major Coding Concerns

We are concerned with the relatively large number of switch statements in the code; the class
RectilinearDomain alone contains thirteen. Widespread use of switch constructs in C++ is
often the sign of insufficiently coherent classes. We believe that this is the case with many of the
switch statements in this package.

Frequently, we find that the switch statement is choosing a behavior based upon a state
variable. These state variables seem to be indicators of unformed classes. In general, we would
strongly prefer to see such logic resolved using classes and virtual functions.

3.4 Major Physical Design Concerns

Our major physical design concerns are with the build system. We believe use of ISOCXX and
SOFTRELTOOLS should be eliminated, because they will decrease the size of the user community
able to easily take advantage of this library.

4 Minimization Package Review

3.5 Redundancy in Interfaces

Many of the classes and functions provide multiple ways of accomplishing the same task. We see
no reason to support more than one way to do something and recommend removing alternative
methods. The resulting smaller interface is easier to understand, to document, and to test for
correctness. Examples are: ways to set all parameter values or just a single one, and ways to
request a specific one or all parameters values.

4 Design Recommendations

Our design recommendations can be divided into two broad categories:

• recommendations regarding the user’s view of the package, and
• recommendations regarding the maintainer’s or extender’s view of the package.

In the first group we include those who code their own Function subclasses. Authors of new
Algorithm s or Domain s we include in the second group.

We consider recommendations of the first sort to be more critical. We believe that user accep-
tance of the package will be determined largely by the user’s experience of the interface of the
package.

We believe recommendations of the second category to be important for the long-term viability
of the package. If it is too difficult to maintain or extend, the package will stagnate.

4.1 Overview

Many of the classes expose their internal details by providing either accessor methods or public
data members. Some of the classes actually expose pointers to internal data that can be ma-
nipulated by a user. This lack of encapsulation leads to excessive coupling, and hinders ease of
use.

Several of the classes have methods that only apply in only some states and need to be ignored
under other conditions. This can cause coupling problems, and makes it much more difficult to
understand how the classes function. It also leads to state checking of the object flavor before
making use of it—a form of dynamic cast. Some of the classes in this situation are

• Function
• Problem
• Domain

Is this done to prevent the proliferation of classes? It is likely that the functionality of several
classes is packaged in a few classes, with extra methods and state existing to discover the true
type buried in the design. Some refactoring of the internals would increase the maintainability
of the code significantly.

4.2 Problem Class

Currently most of user interaction revolves around the Problem . For this reason, we have con-
centrated much of our effort in analyzing the interface of Problem .

Minimization Package Review 5

4.2.1 Resource Management

There is no problem with having more than one Problem object at a time, but instance of the
class Problem may not be copied. There appear to be two reasons: the use of auto_ptr s as data
members, and the difficultly of copying objects known only by an abstract interface (cloning).
It does not seem that there is an innate aspect of the concept of a “problem” that makes is
nonsensical to think of copying one3. We urge that the restriction on copying Problem s be
removed. One disadvantage of not allowing copying is that it becomes difficult to use a Problem
as a data member of another class. This can be trouble in a program where the user does not
have control over the main routine or where another library may want to use this library.

We see no reason to use auto_ptr in the implementation of Problem ; see later comments
about the use of auto_ptr in the interface of Problem . A Problem could instead contain bare
pointers, managed appropriately.

There is a significant amount of literature that discusses solutions to the cloning problem—
using wrappers and a class’s own copy constructor, for example. In this case, the domain is
sufficiently restricted that it seems such solutions may be more than is needed. Requiring that
all subclasses of Algorithm , etc. have a member function clone () which returns a newly made
instance of the same type is not burdensome.

4.2.2 Interface Problems

Because Problem is the user’s main view of the MINIMIZATION package, we believe it is of the
highest importance to have its interface be as clean as possible.

The Problem class contains an unhappy mix of methods: general runtime configuration
parameters (iteration counts, tolerance), readout of results, commands to force internal state
changes (computeInverseHessian), commands to control behavior, and accessors of internal
data. Some tasks are made needlessly tedious, and require the user to invoke sequences of calls
known only from examples or documentation. An example is getting the current function value.
This can only be done if function valueValid returns true . Another example is getting the scale
when an algorithm like Simplex is used. It looks like you get back something nonsensical. We
would prefer to see each of these access functions perform whatever calculations are needed to
produce the correct answers, and to return that answer. If, for some reason, it is impossible
to calculate a quantity, this should be regarded as an exceptional situation—and an exception
should be thrown.

We suggest reorganization of the interface of Problem along the following lines.

4.2.2.1 Functionality Belonging in Problem

As a general guideline, we view Problem as a Facade, which directs the interaction of the
Algorithm , etc. and which provides for the user a simple interface for the performance of
most interesting minimization tasks. We believe the Problem should provide the user’s view of
those functions which will be available in all subclasses of the base classes with which Problem
interacts. It should not provide functions with which the user should not interact; if internals of
the MINIMIZATION package need access to such things, they should be obtained elsewhere.

The functions which we believe should remain in Problem are:

• setTolerance

3We contrast Problem with a class that represents an external resource, e.g., a memory mapped file. It makes sense
for an object representing a memory mapped file to be uncopyable, because the semantics of copying such an object
would be problematic. No such conceptual difficulty appears in the copying of a Problem .

6 Minimization Package Review

• tolerance
• setPoint —we suggest renaming this to setGuess for clarity.
• point —we suggest renaming this to currentLocation for clarity.
• minimize
• functionValue —we suggest renaming this to currentValue , and modifying the semantics

so that it does not fail silently. If there is not an up-to-date cached value of the value
of the function at the current estimated location of the minimum, the function should
be evaluated and the value returned. This function should only fail if it turns out to be
impossible to evaluate the function at the current best estimate of the minimum. This
being an exceptional condition, an appropriate exception should be thrown.

• order —we suggest renaming this to numParameters for clarity.
• functionCallCount
• computeInvHess and getInvHessState —we recommend significant reorganization of the

interface to this information. Users may want access to the value of the inverse Hessian;
such access should be granted through the interface of Problem . They may also need to
know the quality of the estimate, and furthermore they might or might not want to obtain a
value only if one is cached. We recommend two functions:

– InvHessianState getInverseHessian (InverseHessian & result) , which will per-
form the calculation if a value is not already cached, and which will throw an appro-
priate exception if it fails in such a calculation, and

– InvHessianState getCachedInverseHessian (InverseHessian & result) const ,
which accesses a cached value.

Each of these functions returns an InvHessianState , which indicates the status of the
matrix being return in the out argument result .

• setAlgo —we recommend modifying this function to be a member function template:

template <class ALG>
ALG* setAlgorithm (ALG a);

The behavior of this function would be to copy the given object of type ALG (which would
compile only if the given object was an instance of a subclass of Algorithm), and to return
a (non-owning) pointer to the object retained by the Problem . The user can hold onto this
pointer to obtain access to any specialized interface of its concrete class.
We are not worried about inefficiency in the copying of the ALGobject, because such copying
is done rarely. If this is a serious concern to others, we would then propose:

template <class ALG>
ALG* setAlgorithm (std :: auto_ptr <ALG> p);

which would allow the Problem to take ownership of the same ALG instance, and to return
its address to the user via a pointer which does not convey ownership the object.
Note also the change in name. We see little to benefit in the slightly shorter setAlgo , rather
than the clearer setAlgorithm . We believe names like the latter are easier to read and
remember.

• setTerm —we recommend the same sort of modifications here as we did for setAlg , tem-
platizing the function and spelling out the name as setTermination .

It might be useful to add additional functions to drive the minimization; one example might be
takeStep , which is to drive the Algorithm through one iteration of its minimization procedure,
and to then return.

It might be useful to add a second function to evaluate the function being minimized, allow the
user to specify the location at which to evaluate the function: evaluateFunction (const Point & p) .

We strongly urge the addition of a constructor template to allow the user to create a Problem
instance that contains the correct Algorithm subclass upon initialization, rather than making

Minimization Package Review 7

the user construct a Problem with an inappropriate Algorithm type, followed by replacement of
that Algorithm with a new one of the correct type.

We also urge the addition of a constructor template to allow the user to create a Problem
instance with the desired Termination type.

template <class FUNC,
class ALG=Minimization :: Migrad ,
class TERM=Minimization :: StandardTermination >

Problem (FUNC f , ALG a, TERM t);

4.2.2.2 Functionality Belonging in Algorithm

The functions setStrategy and strategy are unclear in meaning and potentially dangerous,
because they have meaning only in the context of how a particular Algorithm subclass interprets
the (integer) value. This functionality, if needed, should be moved to the particular Algorithm
subclasses, and the user can interact with the Algorithm directly if needed.

4.2.2.3 Functionality Belonging in Termination

Several of the functions presently in Problem should be moved to those Termination subclasses
which support such notions, or to the Termination base class if all termination criteria must
support such the functionality. The functions in question are:

• functionCallLimit ,
• functionCallDefaultLimit ,
• setFunctionCallLimit ,
• incrementFunctionCallLimit

4.2.2.4 Functions to be Removed

The problemState method should be removed. This method can only cause trouble because it
exposes all the internal data of the system to be manipulated at will.

The functions paramName and setParamName should be removed. Nothing in the system uses
these features. They may be appropriate for a command line or GUI tool that provides a front
end to the MINIMIZATION package.

The accessors that return pointers to internals of the Problem as pointers to base classes
should be removed. They should be replaced with member templates which return explicit de-
rived types. Below is an example of one to retrieve the algorithm.

template <class ALG>
ALG* algorithm ();

4.3 Domain Class

We considered what a user would need to do to write a Domain to represent a (2-D) circle. The
user needs to write several functions:

• computeInternalPoint , which transforms a point from polar to rectangular coordinates.
This is simple.

8 Minimization Package Review

• computeExternalPoint , which transforms a point from rectangular to polar coordinates.
This is also simple.

• computeInternalScale , which transforms a point and uncertainty in rectangular coordi-
nates to a point an uncertainty in polar coordinates.

We find it distracting that uncertainty estimates are called “characteristic scales”. This
may be common jargon for implementers of minimization algorithms, but it not the most
convenient naming for less-expert users.

On each invocation, this function is expected to indicate that the first parameter (corre-
sponding to the radius r) is not periodic, and the second parameter (corresponding to the
angle θ) is periodic. Why is this to be indicated on every call? Must not the same values be
returned each time from this Domain ?

We did not have sufficient time to complete our investigation of the Domain class. From
the analysis we did complete, it seems possible for the package to be simplified by removing
Domain as an abstract class, leaving only RectilinearDomain . Any additional review of
the package internals should consider this possibility.

4.4 Point and its Isomorphs

The Point class gives a interface that better matches the user’s need that that of a vector. It is
unclear why the vector should be exposed by the Vector () method. An acceptable method might
be const double * asSimpleArray () const to get at the values as a simple C style array.

In debug mode, out of bounds checking is done directly in the Point class. The purpose of
the vector at () method is to perform this function.

There are many classes in the system that are the same (or just about the same) as the Point
class. The only difference appears to be the name of the class.

• Hessian - included 2D access plus order as member
• SecondDerivatives
• Gradient
• Point
• Correlations
• CharactericScale
• InternalHessian - same as Hessian
• InternalScale
• InternalPoint
• InternalSecondDerivatives
• InternalGradient

We certainly acknowledge that all of these are different concepts and that allowing the type
system of C++ find incompatibilities is valuable. However, the current arrangement bloats the
package and makes it more difficult for the user to make use of the system (more header files to
plow through to find out what is available in each of the classes). We strongly recommend getting
rid of all these, except for one, and using private inheritance to generate the unique types.

4.5 Termination Class

We suggest the function finished be renamed isFinished , to clearly indicate that this is a
query as to whether or not the termination criterion is met, as opposed to a declaration that the
termination criteria has been met.

Minimization Package Review 9

4.6 ProblemState

ProblemState is used in the program as a fancy common block. Almost all the user definable
classes (e.g. Algorithm) manipulate it directly even though many of the entries do not make
sense to all classes. In some configurations, it appears to be possible that some of the entries
are meaningless. If possible, this classes should be broken up into parts of closely related
functionality needed by specific methods.

4.7 “hasThis” and “canDoThat” methods

The Domain and the Function classes have methods that are valid only when other methods
indicate that they are valid. We find this to be a poor design choice, evident in the need to con-
struct a large number of case statement to frequently check capabilities. A better decomposition
into cohesive classes would simplify this sort of logic and result in a more maintainable system.

4.8 Contour Class

The Contour class exists to calculate contours of the function being minimized. This is an
important feature when the minimizer is being used for a fitting problem, and perhaps in other
cases as well.

Once a Contour instance is created, the only thing one can do with it is to print it to an
ostream . While this has some utility, we believe that a GUI interface to the MINIMIZATION pack-
age would provide a much superior graphic representation of the contours. To support such a
GUI, the relevant behavior of Contour would be to produce an evaluation of the function on a
grid—in the same manner as that used to produce the ASCII artwork plot now made by printing
a Contour object.

5 Coding Recommendations

There is a calculation of the machine epsilon which is not needed—the values wanted are avail-
able in:

• std :: numeric_limits <long double>:: epsilon ()
• std :: numeric_limits <double>:: epsilon ()
• std :: numeric_limits <float>:: epsilon ()

If quantities derived from these values are needed, such quantities should be constructed starting
from these elements.

5.1 AlgorithmUtility

While looking into the importance of the class Domain , we came across some remarkable nu-
merology in invHessian , which resides in AlgorithmUtility . Many explicit magic numbers
appear in the code, in lines such as:

if (p. parameterIsPeriodic [i] && d > .5) d = .51;

which actually appears in two places in this function. The proliferation of such magic numbers
contributes to making the code extremely hard to understand. We strongly urge their removal.

10 Minimization Package Review

5.2 UserFunction

If two ways are going to be supported for supplying function arguments, we recommend using
const Point & and a C style array const double * instead of a std :: vector <double> .

6 Physical Design Recommendations

6.1 Versioning

There is no version tagging in the CVS repository, making it hard to know what version of the
code is being used. We recommend that tagged releases of the package be established, so that
users can clearly identify which version of the code they are using. The version tagging provided
by CVS rtag is appropriate, and most convenient for existing Fermilab experiments.

6.2 Use of ISOCXX

The makefiles in each of the build directories make use of ISOCXX. ISOCXX was created to
support the use of pre-standard compilers. Such compilers are used increasingly rarely, and
thus ISOCXX is no longer of much benefit. Since the use of ISOCXX in this package limits its
ability to be used in environments not supported by ISOCXX, we believe that it should be removed
from the MINIMIZATION package.

6.3 Use of SOFTRELTOOLS

While several current experiments at Fermilab use SOFTRELTOOLS, it is not used outside the lab.
We believe it is necessary to support the use of the MINIMIZATION package by the experiments
using SOFTRELTOOLS, but that it is not beneficial for the MINIMIZATION package itself to be built
using SOFTRELTOOLS. Because the code size of the package is small, a few standalone makefiles
might suffice as a “build system.” If more is deemed necessary, we suggest the use of the GNU
AUTOMAKE toolchain.

6.4 Optimization of DEBUG Builds

Because of the switches overridden in src/GNUmakefile, even a DEBUG build is made with -O3
optimization. This makes it nearly impossible to actually use the debugger to determine what
the program is doing. A much less aggressive optimization level—perhaps none—should be used
in the debug build.

7 Documentation

We believe most users will look at examples before documentation, so we did so as well. Because
of this, it is critical to get these examples in the best possible shape. We found several problems
with the examples.

Minimization Package Review 11

7.1 Simple Example Needed

The examples contain much extraneous code; code that does not directly apply to understanding
how to best use the library to solve a problem. The code for a random number generator and the
setup function that produces the dataset do not contribute to learning about the minimization
package. Most of this code is clutter and just in the way. A simple, easily interpreted function
definition and simple and small already-prepared dataset will make the example much more
clear:

Listing 7.1: example1.cc
1 // 5 samples , each containing x, y, and uncertainty in y
2 static double x[5][3] = { {1,2,.1}, {3,4,.1}, {5,6,.1},
3 {7,8,.1}, {8,9,.1} };
4 class MyFunc : public Minimization :: Function {
5 explicit MyFunc(double dataset [5][3]) : Function (3) : x_ (dataset) { }

7 double operator()(const Minimization :: Point & a) const
8 {
9 double sum=0.;

10 for(int i =0; i <5; ++ i)
11 {
12 // y = a * cos (x + b) + c
13 // x = x_ [i][0]
14 // y = x_ [i][1]
15 // dy = x_ [i][2]

17 double v = x_ [i][1] - (a[0] * cos (x_ [i][0] + a[1]) + a[2]);
18 sum += v* v / x_ [i][2] * x_ [i][2];
19 }
20 return sum;
21 }

23 double (* x_)[3];
24 };

Now you can just do the simple main like in examples 1 and 2 and it clear what is going on.

There is not a good, clear example that matches what the experimental physicists do. The
coding style in examples 4 and 5 make it difficult to quickly know what is being fitted and
what is input data. Examples 4 and 5 are must too similar; just setting a different algorithm
can be done as a commented out line in example 4. There should be an example of a domain
manipulation. If Termination is expected to be used by developers, then a simple example of a
custom Termination object should be included.

8 Conclusion

We were encouraged by how quickly we were able to add our own Function class to the system
and make use of it. The improvements listed in this document will make this an easier task for
those less familiar with C++ and the concepts within this library. Of particular importance are
the method name change suggestions, a cleanup of the examples, and a better organization of
the Problem class.

We targeted producing three sample applications: (1) a χ2 minimization, (2) adding a genetic
algorithm to do the minimization, and (3) one driving the library from a foreign language. Un-

12 Minimization Package Review

fortunately we only had time to produce the first of these. As for the genetic algorithm, this
technique is sufficiently different from the current algorithms that is it difficult to know the rele-
vance of classes like domain. We kept the third application in mind while solving (1), and see no
fundamental problems.

This review concentrated mostly on external aspects. We suggest another review be scheduled
after all such aspects are addressed that looks further into refactoring the internals to make this
package easier for a person that is not a primary author to maintain.

	1 Introduction
	2 Overview
	3 Major Concerns
	4 Design Recommendations
	5 Coding Recommendations
	6 Physical Design Recommendations
	7 Documentation
	8 Conclusion

